Conversion of Facility Standard Dialysate Sodium to ≤ 138 mEq/L Is Associated With Reduction in Excessive Interdialytic Fluid Gains Without Evidence of Adverse Effect

Jason Zhang; Andrew Lee; Steven M. Brunelli, MD, MSCE; Deborah Benner, MA, RD, CSR; Kathy Lahr, RD; Irina Goykhman, RN, BSN, MBA; David B. Van Wyck, MD; Mahesh Krishnan, MD, MPH, MBA; Allen R. Nissenson, MD
DaVita HealthCare Partners Inc. Denver, CO, USA

Introduction
- Intradialytic sodium administration, including use of dialysate sodium concentrations in excess of 140 mEq/L, has frequently been prescribed in an attempt to prevent or minimize intradialytic hypervolemia (IDH) in hemodialysis (HD) patients.
- Evidence that intradialytic sodium loading enhances thirst and thereby aggravates rather than preventing IDH.
- We reasoned that facilities changing dialysate sodium from a higher to lower concentration would show lower rates of excessive IDWG, high intradialytic UFR, and IDH.

Objective
The objective of this study was to examine the effect of facility-level transition to use of lower dialysate sodium (134-138 mEq/L) on indices of peridialytic fluid balance.

Methods
- We evaluated results from patients treated at 2,130 hemodialysis facilities and observed the proportion of dialytic intervals with IDWG > 5% of body weight, predialysis serum sodium concentration monthly over the period January to August 2014.
- There were no discernible effects of dialysate sodium reduction on target weight, predialysis serum sodium concentration, or mortality.
- As of 30 September 2014, 99.3% of LDO facilities had adopted standard dialysate sodium of 138 mEq/L or lower and 97.9% of LDO patients in these facilities were receiving dialysis with prescribed dialysate sodium of 138 mEq/L or lower.

Results
- By August 2014, 97.6% of all patients treated in participating facilities had prescribed dialysate sodium of ≤ 138 mEq/L.
- Between December 2013 and August 2014:
 - the proportion of dialytic intervals with IDWG > 5% of target weight declined by 18.3%.
 - the proportion of treatments with UFR > 13 mL/hr/kg declined by 17.5%.
 - frequency of episodes of IDH declined by 19.4%.
 - target weight, predialysis serum sodium, and mortality were unchanged.

Conclusions
- Use of standard dialysate sodium in the range 134-138 mEq/L, when coupled with a multifaceted quality improvement program, is effective in reducing excessive IDWG and high UFR rates.
 - Reduction of 18.3% in IDWG and 17.5% in UFR > 13 mL/hr/kg was observed over 8 months following implementation.
 - The favorable results after transition to lower dialysate sodium were achieved with an 18.4% decrease in IDH.
 - There were no discernible effects of dialysate sodium reduction on target weight, predialysis serum sodium concentration, or mortality.

Acknowledgements
We extend our sincere appreciation to the teammates in more than 2,000 DaVita clinics who work every day to take care of patients and also to ensure the extensive data collection on which our work is based.

References

Figure 1: Effects of Sodium Loading
Figure 2: Fluid Balance Indices Following Facility-Level Transition to Use of Dialysate Sodium 134-138 mEq/L

Figure 2: Fluid Balance Indices Following Facility-Level Transition to Use of Dialysate Sodium 134-138 mEq/L